

Measuring the Impact of
User-Centered Design

by Paul Gokin

The paper was originally submitted as course paper for the Measuring User Experience

course taught at the Bentley College’s Master in Human Factors and Information Design

program by Joseph Dumas, Ph.D. The paper received a grade of A, and was praised

for being “thoughtful and well argued.”

Introduction: Why measure UCD ROI.

The main reason for measuring the benefits of user-centered design (UCD) is to show its impact

on important business metrics. Since companies are run by the numbers, it is wise to express this

impact in terms that management can use to make decisions: numbers. These numbers can then

be used to justify the addition of UCD methods to application and product development projects.

For example, at eBay, all proposals, including user experience enhancement projects, must have

an ROI analysis attached to them; otherwise they are not even considered for approval (Herman,

2004, p. 1415). This paper examines some of the most important measures for costs and benefits

of user-centered design and looks at how they can be used to demonstrate the value of UCD.

Categories of Benefits of UCD.

From the standpoint of the income statement, the business benefits of user-centered design are

similar to every other business activity aimed at improving profitability: (a) decrease costs and/or

(b) increase revenue. In the case of UCD, it is useful to think about the cost saving measures at

two different levels: product development and the company as a whole. This gives rise to three

categories of benefits of user-centered design: (1) reducing development costs (and risks), (2)

reducing operating/ownership costs (costs outside of development), and (3) increasing revenue.

Summary of UCD benefits.

The table on the following page summarizes the UCD-attributable measures of system

improvements and their impact on business metrics for three different types of applications:

internal, external, and web-based. Please see the list of assumptions for project environment in

all three cases (page 4) before looking at the table.

Corresponding usability improvement measures:
Business Metrics

Internal Application External Application Web-based Application

Reduced risk of project
failure: the product is

successful.

More accurate user needs assessment, improved user-analyst communication,

result in a product that people want to use. Competitive and internal product

evaluations catch product flaws early enough to correct.

Reduced development
cost

Product flaws are identified earlier in the process and

are less costly to correct. Only the required features

are built. Less documentation is required.

N/A

Reduced deployment
costs

Installation and configuration takes less employee

time; fewer user errors save even more time.

N/A

Reduced maintenance
costs

User requirements are met

better so fewer changes

are required.

N/A User requirements are

met better so fewer

changes are required.

Reduced training costs
and increased
productivity

Product is easier to learn so less training is required.

Employees spend more time doing their work rather

than helping others learn the system.

N/A

Reduced support costs,
higher data quality, and
increased productivity

Design invites fewer user

errors and provides better

error recovery. Users waste

less time troubleshooting

problems.

N/A Design invites fewer user

errors and provides better

error recovery.

Reduced operating
costs: increased

productivity

Fewer employees are

required to complete the

same amount of work.

N/A N/A

Increased revenue:
increased productivity

Employees can do more

revenue-generating work in

the same amount of time.

N/A N/A

Increased revenue:
higher conversion rate

N/A More customers buy the

product based on better

organizational fit, lower

cost of ownership and

improved ease of use.

More customers are able

to get comfortable using

the web site quickly and

transact successfully.

Increased revenue:
more potential customers
and happier current

customers

N/A More customers are

attracted/referred to the

product based on its

reported ease of use.

More users return to the

site. Good customer

experience helps “word of

mouth” marketing.

Application environment assumptions: Internal application is developed/deployed/maintained/supported

by the company. External application is maintained/supported by the customer, but the vendor deploys it and

provides free initial training. Training is a part of the product’s purchase price. Web-based application is

purchased from a vendor who deploys it (rather than developed in-house), but is maintained/supported by

the company. Only the customer-facing portion of the web-based application is considered.

UCD-attributable improvements in business metrics in more detail.

Reduced risk of project or product failure.

Janice Rohn cites some disturbing numbers when talking about the costs of poorly run IT projects:

30% are cancelled before completion, 46% of development costs are spent on failed projects, and

the total cost of failed projects is an estimated $80 billion (Rohn, 2005, p. 206). Aaron Marcus cites

a concrete example where an entire application was scrapped because a user acceptance test found a

fatal flaw in the assumption about how data would be entered (Marcus, 2005, p. 24). IT project

failures are often attributed to poor user needs analysis and inadequate user-analyst communication

(Rohn, 2005, p. 206)—exactly the areas where user-centered design can make a positive difference.

Unfortunately, the risk-reducing impact of UCD is very difficult to measure and can only be

estimated after the fact and only on a failed project. For example, we may determine that the

project failed because an important user requirement was not addressed. If we determine that the

requirement would have been addressed by adding the appropriate UCD activity, we could count

the entire cost of the project as a sadly unrealized UCD-attributable cost savings. On the other hand,

retrospective analyses such as this help build a strong case for UCD’s social internal ROI—the

belief that UCD reduces development time, risk, and cost.

Reduced application development time and cost.

While it seems counterintuitive at first, adding user-centered design activities throughout the project

lifecycle can actually reduce the time it takes to develop an application. The main source of savings

here is the reduction in the number of changes made to the product late in development. Better

definition of user requirements and validation of workflow, organization, and labeling through

usability testing and inspections early in development are just a few examples of UCD-attributable

system improvements that apply here.

Just like risk management, measuring the impact of UCD on development time and cost is difficult,

because of the difficulty associated with linking UCD activities to development time savings.

Having said that, some rough estimates can be made. For example, let’s assume that in early testing

with a paper prototype we discovered that the proposed workflow omits an important step. If the

problem is significant enough that the application would not pass user acceptance testing at the end

of the development cycle, we could estimate how long it would take to fix this issue at that point

and compare it with the cost of fixing it now. The difference is the benefit of UCD involvement.1

Reuse: reduced development time/cost on other similar pojects.

Just like programming code that is re-used on other projects within an organization, UCD products

such as user profiles and style guides can also be reused. Wilson & Rosenbaum also suggest a

database of solutions to common UI problems so that the designers don’t have to re-invent the

proverbial wheel (Wilson & Rosenbaum, 2005. p. 231).

1 There are of course caveats with hypothetical estimates such as this one. We’ve already seen this when trying to
estimate the cost of project risk reduction. Here we assume that someone outside the UCD group would not have
discovered the flaw earlier. In addition, lack of UCD would probably leave more than one issue unaddressed, in which
case it would be nearly impossible to estimate the cost of fixing just that one issue in isolation.

Measuring the impact of reuse is relatively easy. For example, in the case of an existing solution to

a design problem, we could simply subtract the cost of adapting the existing solution to the new

problem from the documented cost of developing the original solution.

Reducing deployment and maintenance costs.

An application that meets user’s requirements well does not need to be updated and patched as

often. One way to measure this is by looking at the historical frequency of software deployments,

analyzing the trends, and correlating the trends to UCD efforts. Unfortunately, both internal and

external confounds may reduce the effectiveness of this approach. For example, changing user

requirements may necessitate more frequent deployments. Increased software “bugs” also may

make deployment more frequent (internal confound); and fewer “bugs” may mask the effect of

UCD, making it seem that the reduction in updates is due to fewer bugs rather than more usable

software. However, if we are aware of the reasons for deployments, it will be easier to adjust for

non-UCD factors to isolate the effect of UCD on deployment frequency.

Reduced training and support costs.

A product that is easier to learn and is less error-prone will require less user training and support. In

cases where training and support is provided by the company using the product, the cost savings are

obvious. In fact, easier to learn applications will also have a “hidden” benefit—enhanced

productivity—because employees will spend less time helping each other learn the application and

more time using the application to do productive work (Rohn, 2005, p. 206). While it may be

difficult to estimate the productivity benefit, reduced training and support costs are relatively easy

to measure by tracking the changes in training expenses and customer support calls and normalizing

those to the number of employees using the system (we’ve found another confound!).

The benefits of reduced training and support are not quite so obvious in vendor companies that

provide support and/or training to their customers. Here, things will depend on how the vendor

charges for these things. If support and training are included in the product price or charged at a

fixed rate, then the savings are obvious. If support and training are charged by the hour, then

improvements here may actually hurt the bottom line! So the lesson here is to be mindful of your

company’s business model and any short-term losses that usability improvements may produce.

But what about the long term? Can usability have a strategic impact and provide sustainable

competitive advantage? Of course it can! Let’s continue with the training example to illustrate this.

Let’s assume that the learning time has been dramatically reduced and, therefore, so was the amount

of training required. A vendor company that previously charged for training separately can now

include it in the price of the product without having to raise that price as much as other vendors

would. This lowers the product’s Total Cost of Ownership (to the customer), making it more

competitive in the marketplace. This example illustrates that the effect of UCD is not limited to

quick, tactical savings, but can have a long term strategic impact.

Increased productivity.

Productivity gains are about doing more work in the same amount of time and/or taking less time to

do the same work. Productivity benefits include improved task efficiency (i.e. starting out on the

correct path, less time spent completing unnecessary steps), as well as improved task effectiveness

(i.e. fewer errors and less time spent recovering from errors). A reduction of errors has an

additional “hidden” benefit beyond productivity: better quality of data (Rohn, 2005, p. 205).

Increased productivity is among the most often cited benefits of user-centered design. A possible

reason for his may be the fact that they can be easily estimated with relatively high precision. To

estimate an increase in productivity all we really need to do is (a) measure the improvement in the

time it took to accomplish a task and (b) multiply the time difference by the fully loaded employee

cost to get the dollar value of the improvement. Karat suggests also multiplying the value by

productivity ratio—“the proportion of time that people are working productively while on the

job”—to come up with a more conservative, but realistic estimate (Karat, 2005, p. 122).

Unfortunately, there is a problem. And it doesn’t have anything to do with the calculation itself, but

with realizing the savings. A couple of years ago I was on a client assignment where I used this

simple calculation to identify a potential for about $37,600 worth of yearly productivity gains to be

achieved by re-desiging the client’s internal application. I estimated the cost of the redesign to be

around $3,000. “$34,700 net. Nice,” I thought. But as I was getting ready to present the figures to

the company president, I showed the calculations to a colleague of mine. His remark was sobering:

“That’s great, Paul. After we implement the changes, whose salary will be cut first?”

The lesson here is that for productivity, cost savings will not make for a persuasive argument unless

the management is prepared to lay off employees or cut their salaries. There is an alternative,

however. Let’s look at it next.

Increased revenue with the same staff.

This is another way of looking at productivity. Basically, instead of calculating the cost savings we

calculate the time savings and present these savings in terms of employee hours saved—the hours

that those employees can now devote to working on additional revenue-generating projects.

To continue my consulting example, I could have expressed the $37,600 in employee cost savings

in terms of the hours the employees could now devote to other projects. It is important to break up

the time savings in a meaningful way; here, it is useful to separate the total savings by the type of

employee (programmer, project manager, support specialist, etc.) and express the savings in terms

of hours per week to keep things manageable. Let’s consider salespeople. If you look at the

calculation grid (see Appendix A), you will see that each salesperson would be able to do 1 (one)

additional hour of work per week. If it takes a salesperson on average 16 hours of prospecting and

negotiating to close a deal, and the average deal adds $2,000/year in revenue, then we could

estimate that the proposed changes will yield approximately $2,000 x (50/16 = 3 more deals per

year) = $6,000/year per salesperson. Therefore, the client’s entire 5-person sales force could grow

annual revenue by $30,000 every year! Even factoring in the 25% commissions of $7,500, the 3-

year simple return for the project is $22,500 + ($30,000 + $22,500) + ($60,000 + 22,500) =

$157,500! This is a figure a manager will find hard to ignore.

If I knew the time required to complete one unit of work, I could have also expressed productivity

gains in terms of the additional units of work. For support personnel, for example, I could have

expressed the time savings in terms of additional calls the person could handle. In our case, each

support employee would be able to devote 3 more hours to taking calls. If one call took 15 minutes

to answer and log, each support employee could handle 12 more calls per week, or 60 calls/week for

the company’s entire support staff. But we don’t have to stop there! Let’s assume that each

customer makes 2 support calls per week on average. This means that the company can now sign up

30 additional customers and still be able to handle their needs with the current support staff!

The overall idea here is that benefit estimates must be tailored to the needs of the decision-makers.

Think of it as a user-centered approach to reporting benefits: put things in terms that management

will find easy to understand and act upon. Sometimes it is dollars and sometimes it is not.

Increased revenue: higher conversion rate.

We’ve just seen how increased productivity can bring in additional revenue for internal applications

by letting employees devote more time to revenue-generating activities. This is perhaps the extent

of revenue-generating benefits for internal applications. For external and web-based applications,

however, UCD-attributable revenue benefits can be much more dramatic.

A survey Nielsen/Norman Group conducted a few years ago revealed that, on average, a “usability

redesign” doubles web site conversion rates (Nielsen, 2003)—basically the number of unique

visitors who transact with the site divided by the number of those who don’t. The general argument

is that increased ease of finding the right product or service and an easier purchasing process result

in higher conversion rates. Naturally, confounds—concurrent events like the company’s marketing

efforts and competitive environment, product/service pricing and availability, technical “bug fixes,”

new technical “bugs,” added features, removed features and so on—make it difficult to make

historical comparisons to determine how much of the gain is attributable to usability improvements

alone. However, the impact of some confounding factors is reduced due to the real-time nature of

web site updates: it may take as little as a few hours to roll out a new design and measure the impact

of the changes. In fact, making small changes, rolling them out, and measuring the real-time effect

on conversion rates is one of the best ways to show the real-world contribution of UCD.

Vendor companies can also measure conversion rate changes and correlate them to UCD-

attributable improvements. For example, those companies that offer downloadable trial versions of

their software can track changes in the ratio of trial downloads to purchases. If the try-to-buy ratio

improves after a UCD-driven update, then the impact of the update on the revenue can be measured.

Of course, the issue of confounds remains. However, methods like trend line analysis or industry

benchmarking can be used to isolate and measure the magnitude and direction of the UCD-

attributable change. Customer surveys can also be used to determine whether improved usability

does, in fact, affect purchase decisions. So the point is that with a little effort the effect of UCD

efforts can be separated from that of the confounds.

Increased revenue: more customers.

Wilson & Rosenbaum suggest that comparisons don’t have to be across time: we can compare our

product against a competing product/site (Wilson & Rosenbaum, 2005, p. 241). This could be an

important strategy for vendors offering products that have competing analogues in the marketplace.

In this case, vendors can usability test their product against the competition (or the previous version

of their own product) to demonstrate their product’s superiority. They can then advertise this fact to

attract more customers.

Web-based applications can also demonstrate the effect of better usability on attracting customers.

For example, they can use cookie-based tracking to easily measure how many customers return to

buy more and correlate any changes with usability improvements over time.

UCD Costs.

“[U]sability costs can range from a small expense of a cubicle or an office and the cost of the

employee’s time, to well over $1 million for multiple high-quality labs, equipment and employees”

(Rohn, 2005, p. 193). In most cases, the most significant cost of adding user-centered design to a

development process is the cost of the people who perform the UCD activities. The cost of their

time is usually measured by adding their salary, benefits, work related expenses (i.e. travel), and per

person operating overhead to come up with fully loaded employee cost.

Unlike the benefits of UCD that sometimes can seem as elusive as a four-leaf clover, the costs of

user-centered design investment are easy to calculate and basically consist of any combination of

the following: a one-time expense of setting up a lab, UCD in-house staff’s fully loaded labor cost,

UCD contractor staff’s hourly rate, the cost of recruiting and compensating participants, and

ongoing expenses associated with running the lab (videotapes/DVDs, software updates, etc.).

Confounds.

Confounding factors, or confounds, are things that make it difficult to establish (prove the existence

of), describe (prove correlation vs. causality) and measure the relationship between the costs of

UCD activities (the independent variable) and the corresponding change in business metrics (the

dependent variable).

In particular, the redesigned product usually incorporates changes contributed by groups other than

the UCD group including additional features (ideas for which came from outside of the UCD

group), technical “bugs,” and so on which makes it difficult for the UCD group to claim full

responsibility for the successes or failures of the final product. Even the impact of UCD activities

on the development process itself can be difficult to estimate if, for example, major changes in

management or programming staff occur between projects (i.e. budget/staffing cuts or offshoring).

In addition to the internal confounds discussed above, changes in the product’s environment may

impact its success or failure. These factors include things like geo-political events (i.e. wars or

elections), overall economic climate (i.e. boom or recession), trends (i.e. industry or seasonal),

changes in the company’s legal or social environment (i.e. litigation, un/favorable legislation, or

publicity), changes in the company’s competitive environment (i.e. entering or exiting competitors),

changes in the company’s marketing/sales efforts (new marketing campaign or hire of new

salespeople), business infrastructure problems (i.e. supply chain breakdowns, poor order fulfillment

or unhelpful customer service), and IT infrastructure (i.e. viruses or denial of service attacks). The

problem is that these factors may impact the project metrics as much or more than any changes in

user experience, therefore, potentially negating the impact of the entire UCD effort.

Not accounting/correcting for the confounds makes statements about the impact of UCD activities

on business metrics internally invalid. Fortunately, multivariate statistical methods such as factor

analysis or principal component analysis can be effective in removing the effects of the various

confounding factors. Another approach is the use a metric that is less affected by confounds, but lets

us demonstrate the effect of UCD-attributable improvements. For example, we would use

conversion rates that than sales to measure the impact of a redesigned checkout process on an

eCommerce site. Sale can be impacted by a number of confounds (i.e. changing number of

customers visiting the site), whereas conversion rates measure the look-to-buy ratio rather than the

sales volume. The point is that we should be aware of the confounds and use the appropriate

techniques to adjust for their effect, or select measures that are less affected by them. The challenge

is identifying what the confounds are and gauging the magnitude and direction of their effect.

Putting it all together: calculating the return on investment in user-centered design.

Before looking at the case study I prepared for this paper, let’s review what a UCD-specific cost-to-

benefit ratio is and what it is not. The UCD cost-to-benefit ratio is a relatively crude measure that

compares the cost of UCD activities on a project to the expected or realized financial benefits of

these activities. While this sounds pretty good in theory, the examples in the book (Bias & Mayhew,

2005) illustrate the rampant misuse of the method as well as the method’s managerial uselessness.

Here are some of the issues:

a. All of the project’s benefits are attributed to UCD activities. Clare-Marie Karat cites a

study where $450,000 in UCD expenses “yielded” $60 million in revenue giving a head-

spinning cost-benefit ratio of 1:133 (Karat, 2005, p. 125). Nigel Bevan attributes Israel

Aircraft Industries MPC’s entire $400,000 increase in sales (and the additional development

and support cost savings of $380,000) to the $27,000 investment in UCD for a cost-benefit

ratio of 1:29 (Bevan, 2005, p. 592). Even in the absence of all confounds, only those

projects where all of the new or changed features championed by the user-centered design

effort would qualify for this generalization. This is never the case.

b. The additional costs associated with the changes in the benefit measures are ignored.

Bevan’s calculation completely ignores the costs associated with additional sales that must

be incurred. In this case these expenses may include additional deployment, training,

support, and materials costs. In the case of an eCommerce site selling physical goods, the

insult is worse still where most of the sales revenue is “eaten up” by the cost of goods sold.

c. Claims of future benefits don’t take into account capacity, time, and other “bottlenecks”

outside the areas touched by the project that may prevent the benefits from materializing

to the estimated extent. To use the physical goods eCommerce example, the merchant may

not have the warehouse space or staff to fulfill the additional orders. Construction of

additional facilities and hiring/training additional staff take time and money.

d. The time value of money is ignored. Any calculation of return on investment that claims

monetary benefits to be realized at some point in the future must calculate the present value

of those benefits by discounting them at a predetermined rate. This is basic accounting.

e. Useless in decision making. In order for management to evaluate the attractiveness of an IT

project as an investment, all relevant costs and benefits should be included. Stating that for

every dollar of UCD investment $29 in savings and sales will result (a 1:29 cost-benefit ratio

that Bevan cites in his study) is meaningless to management trying to decide whether or not

to invest in the project, because none of the additional expenses for realizing the benefits are

included. It also helps to know the total dollar value of the project rather than ratios or

percentages.

The point is that while cost-benefit ratios may help usability professionals feel good about

themselves, they don’t help management make the decision to fund the project.

The case for Net Present Value.

Calculating a project’s Net Present Value (NPV) is a much more precise and authoritative way to

express the impact of a usability redesign than a simple cost:benefit ratio. Let me illustrate this by

performing the necessary calculations for my client case.

The business, product, and roles. The client’s business is to sell templated web sites and lead/sale

management systems to their business customers. The salespeople sell the product, the programmers

customize it for the customer, and managers oversee each project until it is handed off to the support

specialists who train the customers, provide technical support, and respond to customer requests.

The application and the project. All of the client’s employees use an internal application to track their hours,

log their activities, interact with clients, manage projects, and manage potential and current customers. The

project I undertook for the client was to evaluate how people use this internal application and determine how

it can be improved.

Project costs. As a part of the evaluation, I conducted observations and contextual interviews with all

stakeholder groups excluding the salespeople who received a survey instead. I also performed a heuristic

evaluation and a task-based walkthrough. Here are the costs for this evaluation:

 Loaded employee hourly costs:2

 Programmer: ($40,000 + $40,000 * .4 + $40,000 * .4 * .15) / 240 / 8 = $33/hour

 Manager: $40; Support: $26; Sales: $46 (extrapolated from typical commissions)

3 hours of contextual interviews (1 hour with each stakeholder):

$33 + $40 + $26 + 3 * $35 (my rate) = $204

3 hours of observations (participants were about ½ as productive during observations):

 $16.5 + $20 + $13 + 3 * $35 = $155

3 30-minute questionnaires created by me and completed by the salespeople:3

 $35 * 2 + $46 * .5 * 3 = $139

Heuristic evaluation + task-based walkthrough:

 $35 * 10 hours + $35 * 10 hours = $700

Deliberation + documentation + creating/presenting the proposal:

 $35 * 10 hours + $40 * .5 * 2 = $390

TOTAL cost to analyze the application: $1588

Proposed work to implement the suggested changes:

Design and prototyping (me): $35 * 8 = $280

Feedback (me + users): $35 * 4 + .25 * $145 (about ¼ hours from each) = $176

2 Since this is a completely internal project, everyone except the salespeople is on overhead. So the .35 overhead factor
is not used to arrive at the fully loaded cost.
3 I could have calculated the salespeople’s time in terms of lost revenue, but used their commissions-derived loaded cost
instead for convenience.

Programming, debugging, rollout: $33 * 40 = $1320

 Learning curve (30 minutes with the system for everyone): $573

TOTAL cost of the project: $3,937 ≈ $4,000, including $1300 in UCD costs.

Project Benefits. We’ve already established that the biggest gains from improved usability will come from

additional customers whom the salespeople will be able to sign on to use the software (see page 9). We’ve

already estimated the after-commissions 3-year revenue benefit of $157,500 (cash flows of $22,500,

$52,500, $82,500 in years 1, 2, and 3, respectively) which represents a growth rate of 15 new customers per

year. We can now calculate a preliminary 3-year NPV for the project (using a 5% discount rate):

NPV = 22,500 * (1/(1.05)) + 52,500 * (1/(1.05))2 + 82,500 * (1/(1.05))3 – 4,000 =

 21,429 + 47,619 + 71,267 – 4000 = $142,267

The $142,267 looks great, doesn’t it! However, there is a catch. Two, actually. In order to realize this NPV,

we need to be able to handle 15 new customers per year. Unfortunately, given our current staffing situation,

we are at capacity when it comes to programmers and the updated system will not produce enough

appreciable time savings to enable the programming staff to handle the addition of even one additional

customer. So the catch #1 is that we don’t have enough staff to handle the additional customers. Catch #2 is

that we need to factor the cost of handling those additional customers into our NPV formula.

Let’s assume that the president agreed to hire an additional programmer in year 1 and an additional support

person at the end of year 2 to help grow the customer base. We now should have enough staff. Now lets

calculate the cost associated with adding 15 customers per year.

Let’s assume it takes 20 programmer-hours to customize and deploy a customer web site, 2 support hours to

train each new customer, and ½ hour/week to support them. To reduce complexity, let’s assume that there

are no additional costs associated with adding and supporting a customer.

Annual programming costs here are: $33 * 20 * 15 = $9,900 / year. Now for the support costs. The

redesigned application freed up 720 support hours per year. Support requirements are as follows:

 Year 1: 2 * 15 + (15 * 48 * .5) – 720 = 0

Year 2: 2 * 15 + (30 * 48 * .5) – 720 = 30

Year 3: 2 * 15 + (45 * 48 * .5) – 720 = 380

The cost of extra support in years 2 and 3 is: $26 * 30 and $26 * 380, or $780 and $9,880, respectively. We

can now subtract these outflows from our NPV formula cash flows to include the additional costs:

Final NPV = (22,500 – 9,900) * (1/(1.05)) + (52,500 – 9,900 – 780) * (1/(1.05))2 + (82,500 – 9,900 – 9,880) *

(1/(1.05))3 – 4,000 = $12,000 + $37,932 + $54,180 – $4,000 = $100,112

Compare the above NPV with the relatively meaningless non-discounted UCD cost-benefit ratio of

1,300 : 157,500 or 1:121!

So if I were going to pitch this project to the company president, I would say:

“The project has an estimated 3-year NPV of $100,000 contingent on the provision of 350

additional programmer-hours per year and 30 and 380 hours of support hours in years 2 and 3,

respectively to handle the additional customers. The fully-loaded cost of additional programmer

and support hours has already been included in the calculation.”

Conclusion.

The main theme of this paper has been that the benefits of UCD should be expressed in terms

managers will find useful. I believe that it is only in the larger context of the project as a whole,

with all of its relevant costs accounted for, that this is possible. This sentiment is echoed in the way

UCD project proposals are put together at eBay: the proposal justifies the expected results rather

than the process in terms of how they affect the “financial levels that drive the business” (Herman,

2004, pp. 1414-1415). Simple cost:benefit ratios are meaningless and should be avoided.

References.

Bevan, N. (2005). Cost-Benefit Framework and Case Studies. In R. G. Bias & D. J. Mayhew (Eds.),

Cost Justifying Usability: An Update for the Information Age (pp. 575-600). San Francisco, CA:

Morgan Kaufmann.

Karat, C-M. (2005). A Business Case Approach for Usability Cost Justification for the Web. In R.

G. Bias & D. J. Mayhew (Eds.), Cost Justifying Usability: An Update for the Information Age

(pp. 103-141). San Francisco, CA: Morgan Kaufmann.

Marcus, A. (2005). User Interface Design’s Return on Investment: Examples and Statistics. In R. G.

Bias & D. J. Mayhew (Eds.), Cost Justifying Usability: An Update for the Information Age (pp.

17-39). San Francisco, CA: Morgan Kaufmann.

Rohn, J. (2005). Cost-Justifying Usability in Vendor Companies. In R. G. Bias & D. J. Mayhew

(Eds.), Cost Justifying Usability: An Update for the Information Age (pp. 185-213). San

Francisco, CA: Morgan Kaufmann.

Wilson, C., & Rosenbaum, S. (2005). Categories of Return on Investment and Their Practical

Implications. In R. G. Bias & D. J. Mayhew (Eds.), Cost Justifying Usability: An Update for the

Information Age (pp. 214-263). San Francisco, CA: Morgan Kaufmann.

Herman, J. (2004). A Process for Creating the Business Case for User Experience Projects. CHI

’04, 1413-1416.

Appendix A. Case study calculations.

Available upon request.

